NEUROSCIENTIFIC EVIDENCE OF EARNING BENEFITS FROM PHYSICAL ACTIVITY AND OUTDOOR BREAKS

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

TRADITIONAL STUDIES OF THE LEARNING AND WORKING BRAIN

Laboratory-based methods can simulate real learning situations

- MEG (magnetoencephalography)
- fMRI (functional magnetic resonance imaging)

MEG recording Photo: Neuromag Kasvatustieteellinen tiedekunta

@minnahuoti

2

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

STUDIES OF THE AUTONOMOUS NERVOUS SYSTEM ACTIVITY IN LEARNING SITUATIONS

- Measurements of the heart, breathing, movement, skin reactions
- Indirect measures of autonomous nervous system functions

@minnahuoti

EMBODIED COGNITION

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

Kasvatustieteellinen tiedekunta

Design: Jun Takahashi

WHY PHYSICAL ACTIVITY IS SO IMPORTANT

New cells are born in the hippocampus especially in endurance training but also on resistance training

Nokia, M. S., Lensu, S., Ahtiainen, J. P., Johansson, P. P., Koch, L. G., Britton, S. L., & Kainulainen, H. (2016).
Physical exercise increases adult hippocampal neurogenesis in male rats provided it is aerobic and sustained. *The Journal of physiology*, *594*(7), 1855-1873.

Miriam Nokia University of Jyväskylä

Physical activity makes brain memory areas grow and enhances memory functions

Erickson K I et al. PNAS 2011;108:3017-3022

-120 sedentary adults

-Blue team: walking 3 x per week 1 year with 60-75% max pulse 40 min

-Red team: continuing sedentary lifestyle: brain ageing with shrinking hippocampus

-growth of hippocampus and also better memory functions in blue group

DANCING ENHANCES PHYSICAL AND MENTAL FUNCTIONS

Cognitive tests: memory test Physical tests: Posture, Hand motor skills, Hand motor speed, Hand motor accuracy, Hand reaction time

Questionnaire: lifestyle

Kattenstroht et al., 2013, Aging Neuroscience

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

IG

CG

STUDIES OF PHYSICAL ACTIVITY INTERVENTIONS IN SCHOOLS

	Author	Sample	Milieu	Intervention	Outcome measure	Response	
	Fourestier [7]	Children in final year of primary school 13 years	Vanves (Paris)	Various sports and other activities, 13 h/wk increase for one year	Overall academic performance	Enhanced in experimental group	+
	Shephard et al. [8]	546 children in grades 1 through 6	Trois Rivières, Québec	5 h of specialist physical education per week for 6 years	Teacher ratings, Standard Provincial examination, WISC tests	Enhanced teacher ratings, Maths but not English improved in Provincial exams, 3–4% gain on WISC	,
	Sallis et al. [9]	655 children grades 5 and 6	California	27–42 min additional physical education per week for two years	Metropolitan achievement tests	Non-significant trend to gains in English, arithmetic and behaviour	
	Dwyer et al. [11]	500 10-year-old students	South Australia	75 min/day of endurance training	Scores for reading and arithmetic	Non-significant trend to gains in English and arithmetic at 2-year follow up	(+)
	Ahamed et al. [13]	287 9–11 year old primary students	British Columbia	Added 47 min/wk of varied activities for 16 months	Canadian Achievement Test (CAT-3)	Slight trend to improved scores	(+)
	Coe et al. [14]	214 grade 6 students	Western Michigan, U.S.A.	Nominal 55 min/day (actual 19 min/day) physical education for one semester	Classroom assessments and nationally standardized achievement scores	No change in academic performance except in sub-group who exercised vigorously	+
HELSIN HELSIN	Raviv et al. [15]	358 kindergarten and grade 1 students Trude	Israel au & Shephard 2008	One-year movement education program review	Reading skills and arithmetic skills	Both improved relative to controls	+
UNIVE	RSITY OF HELSINKI	Kasvatustieteellinen t	iedekunta	9			2.10.2023

÷

÷

(+)

PHYSICAL ACTIVITY PROGRAMS AND COGNITION IN CHILDREN – META-ANALYSIS

- Acute physical activity has a positive effect on
 attention
 - g = 0.43; 95% CI = 0.09, 0.77; 6 studies
- Longitudinal physical activity has a positive effect on
 executive functions
 - g = 0.24; 95% CI = 0.09, 0.39; 12 studies
 - attention
 - g = 0.90; 95% CI = 0.56, 1.24; 1 study
 - academic performance
 - g = 0.26; 95% CI = 0.02, 0.49; 3 studies

De Greeff, J. W., Bosker, R. J., Oosterlaan, J., Visscher, C., & Hartman, E. 2018. Effects of physical activity on executive functions, attention and academic performance in preadolescent children: a meta-analysis. *Journal of science and medicine in sport*

WHY SLEEP IS SO IMPORTANT

The brain does not "rest" during the night but works heavily Memory consolidation: move learnt information to long term memory Processing emotional information

Sleep is a key factor in learning and in neural resilience

Kasvatustieteellinen tiedekunta

EFFECTS OF E-LEARNING TO BEHAVIOUR

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

Kasvatustieteellinen tiedekunta

CHANGING ENVIRONMENTS OF LEARNING

@minnahuoti

- Our cognitive capacity is situational and highly dependent on the environment
 - To be mentally active is easier with physical activity
- Teachers are responsible for creating healthy, physically active ways of teaching and learning for children and adolescents